Multi-objective Multiagent Credit Assignment Through Difference Rewards in Reinforcement Learning
نویسندگان
چکیده
Multiagent systems have had a powerful impact on the real world. Many of the systems it studies (air traffic, satellite coordination, rover exploration) are inherently multi-objective, but they are often treated as single-objective problems within the research. A very important concept within multiagent systems is that of credit assignment: clearly quantifying an individual agent’s impact on the overall system performance. In this work we extend the concept of credit assignment into multi-objective problems, broadening the traditional multiagent learning framework to account for multiple objectives. We show in two domains that by leveraging established credit assignment principles in a multi-objective setting, we can improve performance by (i) increasing learning speed by up to 10x (ii) reducing sensitivity to unmodeled disturbances by up to 98.4% and (iii) producing solutions that dominate all solutions discovered by a traditional teambased credit assignment schema. Our results suggest that in a multiagent multiobjective problem, proper credit assignment is as important to performance as the choice of multi-objective algorithm.
منابع مشابه
Multi-objective multiagent credit assignment in reinforcement learning and NSGA-II
Multiagent systems have had a powerful impact on the real world. Many of the systems it studies (air traffic, satellite coordination, rover exploration) are inherently multi-objective, but they are often treated as single-objective problems within the research. A key concept within multiagent systems is that of credit assignment: quantifying an individual agent’s impact on the overall system pe...
متن کاملAnalysing the Effects of Reward Shaping in Multi-Objective Stochastic Games
The majority of Multi-Agent Reinforcement Learning (MARL) implementations aim to optimise systems with respect to a single objective, despite the fact that many real world problems are inherently multi-objective in nature. Research into multi-objective MARL is still in its infancy, and few studies to date have dealt with the issue of credit assignment. Reward shaping has been proposed as a mean...
متن کاملExploiting structure and utilizing agent-centric rewards to promote coordination in large multiagent systems
A goal within the field of multiagent systems is to achieve scaling to large systems involving hundreds or thousands of agents. In such systems the communication requirements for agents as well as the individual agents’ ability to make decisions both play critical roles in performance. We take an incremental step towards improving scalability in such systems by introducing a novel algorithm tha...
متن کاملQuicker Q-Learning in Multi-Agent Systems
Multi-agent learning in Markov Decisions ProbK i s chanenging because of the presence ot two credit assignment problems: 1) How to credit an action taken at time step t for rewards received at t’ > t ; and 2 ) How to credit an action taken by agent z considering the system reward is a function of the actions of all the agents. The first credit assignment problem is typically addressed with temp...
متن کاملMultiagent Learning with a Noisy Global Reward Signal
Scaling multiagent reinforcement learning to domains with many agents is a complex problem. In particular, multiagent credit assignment becomes a key issue as the system size increases. Some multiagent systems suffer from a global reward signal that is very noisy or difficult to analyze. This makes deriving a learnable local reward signal very difficult. Difference rewards (a particular instanc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014